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The stability of streaks, generated by vortices in wall-bounded shear
flows, is studied analytically, numerically and experimentally. A novel
analytical approximation of the linear transient growth in Couette flow
allows investigating the secondary stability of spanwise periodic streaks
using Floquet theory. The optimal parameters for instability correspond
to the strongest inflection points, those having maximal shear, rather
than initial conditions maximizing the energy growth. For the sym-
metric transient growth the most dangerous secondary disturbances are
sinuous, associated with spanwise inflection points having a spanwise
wavenumber of β = 3.6 (as opposed to β = 1.67 which maximizes energy
growth) and the varicose instabilities are associated with spanwise inflec-
tion points as well. For the antisymmetric transient growth both sinu-
ous and varicose instabilities are observed, associated with spanwise and
wall-normal inflection points, respectively. The theoretical results are
verified by obtaining transition in a direct numerical simulation (DNS)
initiated by the corresponding analytical expressions. The rapid evolu-
tion of the secondary disturbance on top of the slowly evolving transient
growth enables us to use the multiple time scales method to follow the
evolution of the secondary disturbance. The very good agreement be-
tween the DNS and analytical expressions verifies the theoretical predic-
tions. Finally, the above results are discussed with respect to previous
transitional pipe and Poiseuille flow experiments.

I. Introduction

Streaks of high and low velocity appear in various flow states, both in laminar flow,
where they may be created by wall blowing, suction or by the presence of a bump, as
well as in transitional and turbulent flows (e.g. [1,2]). In particular, streamwise indepen-
dent streaks have been identified as the ones responsible for maximal transient growth
(TG), which has been proposed as a route to turbulence in wall-bounded shear flows.
A significant TG of several orders of magnitude can occur for linearly stable flows [3].
Consequently, the stable flow is modified and may become linearly unstable to secondary
instabilities. The optimal linear TG corresponds to a symmetric pair of nearly stream-
wise independent counter rotating vortices (CVP), having a spanwise wavenumber of
β = 1.67 for Couette flow [3]. Additionally, there exists also an antisymmetric optimum
consisting of two pairs of CVPs (four vortices); however the latter grows much less than
the symmetric optimum. The vortices create streaks which may introduce instability to
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the flow. The secondary instability of streaks in channel flows has been investigated by
Reddy et al. [4] for the symmetric optimum and a single wavenumber of β = 2 (this value
yields maximal energy gain for Poiseuille and almost maximal energy gain for Couette
flow). Recently, Karp and Cohen [5] have demonstrated that maximal energy growth is
not essential for obtaining transition. Rather, it is the ability of the modified base-flow to
create strong enough inflection points in the velocity profile. This has been demonstrated
by simulating the transition process in Couette flow undergoing antisymmetric TG where
the maximal energy gain has been an order of magnitude smaller than that associated
with the symmetric optimal for the same flow parameters.

In this work, the model of Karp and Cohen [5] is utilized to find the optimal wavenum-
bers (β) which maximize the shear at the inflection points. At the next step, the most
dangerous secondary disturbances, having the highest growth rate, for symmetric and
antisymmetric TG are identified. The route to turbulence of each of the disturbances is
then explored via DNS and compared an analytical approximation based on the multiple
time scales method. Finally, the scope is broadened and the results are compared to
previous transitional pipe and Poiseuille flow experiments.

II. Mathematical Model and DNS

The TG in Couette flow is approximated analytically by a combination of four stable
modes. The model is summarized below, while further details can be found in [5]. TG is
usually characterized by the gain of the kinetic energy:

E(t) =
1

4LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(u2 + v2 + w2)dxdydz; G(t) =
E(t)

E0

, (1)

where E(t) is the kinetic energy, given by a volumetric integral over the whole domain and
G(t) is the energy gain, which is the energy normalized by its initial value E0 = E(t = 0).
The velocity field is u(t, x, y, z) = (u, v, w)T , where t is the time and u, v, w are the
velocity components in the streamwise, wall-normal and spanwise coordinates (x, y, z),
respectively. All length scales are normalized by the channel half height, h. The velocity
is normalized by the velocity of the wall, Uw and time by h/Uw. The velocity field is
described by

u = U 0(y) + εu1(t, y, z) + ε2u2(t, y, z) + δud(t, x, y, z) + · · · , (2)

where U 0(y) = (y, 0, 0)T is the Couette base-flow. The term εu1(t, y, z) represents the
linear TG disturbance which is a combination of four modes, ε2u2(t, y, z) represents the
nonlinear TG modification consisting of the interactions between the four modes and
δud(t, x, y, z) represents the secondary 3d disturbance. The need to calculate the non-
linear modification of the TG (u2) arose in our previous work [5], where its inclusion
was essential for obtaining instability in the case of antisymmetric TG. The O(ε2) equa-
tions are solved analytically using Duhamel’s principle. It is convenient to designate the
Couette flow undergoing TG, i.e. the modified base-flow, as:

U(t, y, z) = U 0(y) + εu1(t, y, z) + ε2u2(t, y, z). (3)

A. Multiple time scales

The TG is initially algebraic, followed by slow viscous decay over a long time scale of
O(Re). Except the initial stage, a separation of time scales between the slowly varying TG
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and a rapidly evolving secondary disturbance can be assumed. In our previous work [5], it
has been assumed that the secondary disturbance evolves with a constant eigenvalue and
eigenfunction. In the current study the model is improved with the aid of the multiple
time scales method. Accordingly, the velocity field is written as

u = U(τ, y, z) + δud(t, τ, x, y, z) + µδudd(t, τ, x, y, z) + · · · , (4)

where τ = µt is the slow time scale (µ = O(Re−1) ≪ 1), U (τ, y, z) is the modified
base-flow which depends only on the slow time scale, δud(t, τ, x, y, z) is the secondary
disturbance which depends on both time scales and µδudd(t, τ, x, y, z) is used to correct
the long time evolution of the secondary disturbance. Following the multiple time scales
method, we assume

ud = ℜ

{
A(τ) exp

{
i

(
αx− 1

µ

∫ µt

µt0

ω(τ)dτ

)} Mz∑
k=−Mz

ûdk(τ, y)e
iβkz

}
, (5)

where α is the streamwise wavenumber, ω(τ) the slowly varying eigenvalue, ûdk(τ, y) the
slowly varying eigenfunction and A(τ) the slowly varying amplitude.

Substituting expression (4) into the Navier Stokes equations we obtain:
(a) the O(µ, µ2) equations governing the evolution of the modified base-flow U (τ, y, z);
(b) the O(δ) equations for the secondary disturbance ud(t, τ, x, y, z) which have already
been solved using Floquet theory in our previous work [5], where the modified base-flow
has been assumed to be parallel and frozen in time (see eq. (2.6) and appendix C therein);
(c) the O(µδ) equations for the slow time correction of the secondary disturbance. These
equations for udd are used to obtain the correction of the amplitude A(τ) for long times
and are detailed in appendix A. This procedure involves the calculation of the adjoint
eigenfunctions which is detailed in appendix B. The amplitude correction is given by

A(τ) = A0 exp

(
−
∫ τ

τ0

N(t′)

M(t′)
dt′

)
, (6)

where A0 is the initial amplitude at time τ0. Substituting eq. (6) back into the expression
for the secondary disturbance (eq. (5)) we obtain:

ud(t, x, y, z) = ℜ

{
A0 exp (i (αx−Θ(t)))

Mz∑
k=−Mz

ûdk(t, y)e
iβkz

}
, (7a)

Θ(t) =

∫ t

t0

(
ω(t′)− i

Re

N(t′)

M(t′)

)
dt′, (7b)

where Θ(t) is the secondary disturbance phase, corrected for long times. When calculating
the evolution of the secondary disturbance, first the eigenvalues ω(t) and eigenfunctions
ûdk(t, y) are obtained using the secondary stability analysis. The eigenfunctions are
normalized by the value of the streamwise eigenfunction at a certain location (y0, z0) to
ensure that they change smoothly with time. It should be noted that as the multiple
scales analysis is linear, the results are independent of the location of the normalization
(y0, z0).

The next stage is the calculation and normalization of the adjoint eigenfunctions,
in a manner similar to the regular eigenfunctions. It should be noted that the adjoint
eigenfunctions can be normalized at a location different from the one corresponding to
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the regular eigenfunctions. The adjoint eigenfunctions are used to calculate the phase
correction term N(t)/M(t), providing the full solution of the secondary disturbance from
eq. (7a).

B. Direct Numerical Simulation

The theoretical predictions are compared with results obtained by the ‘Channelflow’
DNS code [6] initiated by the analytical expressions. The simulation is pseudospectral,
utilizing Fourier modes in the x and z directions and Chebyshev modes in y. The results
are obtained using Nx = 64, Ny = 65 and Nz = 64. The effect of increasing the resolution
is found to be negligible. The domain contains two walls at y = ±1, a single wavelength in
the streamwise direction, Lx = 2π/α, and a single wavelength in the spanwise direction,
Lz = 2π/β. Since the 3/2 rule is applied to remove aliasing, the number of corresponding
Fourier modes is N ′

x,z = 2/3Nx,z. The time step is chosen to obtain an initial CFL number
of ∼ 0.1.

III. Results

Using our model we obtain an analytical approximation of the modified base-flow for
the symmetric (even) and antisymmetric (odd) TG. The streamwise component of the
modified base-flow for the arbitrary chosen values Re = 1000, E0 = 10−4, β = 1 and
t = 30 is presented in figure 1 for the even (1a) and odd (1b) TG. The color indicates the
magnitude of velocity. The strongest wall-normal inflection points, having the maximum
wall-normal shear, are indicated by the black circles and the strongest spanwise inflection
points, having the maximum spanwise shear, by the magenta circles. The one-dimensional
(1d) velocity profiles containing the strongest inflections are indicated on the figure.

Figure 1. Streamwise modified base-flow for Re = 1000, E0 = 10−4, β = 1 and t = 30.
The ‘strongest inflection’ 1d velocity distributions in the wall-normal (black) and spanwise
(magenta) directions are indicated on the modified base-flow with the strongest inflections
encircled. The color indicates the magnitude of velocity. (a) even TG (b) odd TG.
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Our purpose is to find the optimal spanwise wavenumbers which maximize the strength
of the inflection points (i.e. their shear) over all times. This is achieved by calculating
the strongest inflection points for different times and wavenumbers (β, t) and looking for
the ones having maximal shear. The resulting strongest inflection points for the even and
odd TG, Re = 1000 and E0 = 10−4 are presented in table 1. It can be seen that the
strongest inflection points, i.e. the ones having maximum shear, are in the wall-normal
direction and that the even TG generates stronger inflection points compared to the odd
TG. The strongest inflection point are attained for spanwise wavenumbers which do not
maximize the energy gain (which is maximized at β = 1.67 for the even TG and β = 2.8
for the odd TG).

TG max ∂U
∂y

βmax ∂U
∂y

tmax ∂U
∂y

max ∂U
∂z

βmax ∂U
∂z

tmax ∂U
∂z

even 3.470 1.8 148 2.247 3 75

odd 2.688 3.3 36 1.176 5.2 25

Table 1. The shear at the strongest wall-normal and spanwise inflection points and the
optimal wavenumbers β and times t when it is attained for even and odd TG, Re = 1000
and E0 = 10−4.

Type TG β α t |ωr/α| ωi

sin. even 3.6 1.8 61 0 0.311

var. even 2.1 2.5 81 0.088 0.173

sin. odd 3.5 1.5 36 0.413 0.092

var. odd 1.6 1.2 43 0 0.063

Table 2. The optimal parameters yielding the maximal growth rate of the secondary
disturbance for Re = 1000 and E0 = 10−4 for even and odd TG.

To check whether the strongest inflection points introduce instability to the flow we
perform a thorough secondary stability investigation to find the secondary disturbances
having the highest growth rate. The parameter space (α, β, t) is explored to find the
optimal secondary disturbances for Re = 1000 and E0 = 10−4. There are two types
of secondary disturbances: varicose and sinuous modes, corresponding to their spanwise
distribution: symmetric and antisymmetric, respectively. The parameters maximizing
the growth rate of the varicose and sinuous secondary disturbances for the even and odd
TG are listed in table 2. It can be seen that the most dangerous secondary disturbance is
sinuous and that the even TG has stronger instabilities. For both sinuous disturbances the
spanwise wavenumbers are very similar and α/β ∼ 2, while for the varicose disturbances
α ∼ β. The optimal spanwise wavenumbers which maximize the secondary instability
are different from the ones maximizing the inflection points due to 2d effects of the base-
flow. Nevertheless, examination of the eigenfunctions of the most dangerous disturbances
reveals their connections to inflection points. The streamwise magnitude of the above
four secondary disturbances is presented in figure 2. The varicose disturbance (figure 2a,
even TG) is associated with spanwise inflections. The combination of a varicose mode
and spanwise inflection is somewhat surprising. Therefore this disturbance is compared
with a sinuous disturbance calculated for the same parameters (α = 2.5, β = 2.1 and
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t = 81). It is found that for these parameters, which maximize the varicose instability,
the sinuous disturbance is more unstable than the varicose disturbance. This implies
that the varicose disturbance should not be treated as a separate route for transition,
as it is completely masked by the sinuous disturbance. Therefore, only three instability
mechanisms remain relevant, even-sinuous, odd-varicose and odd-sinuous. The sinuous
disturbances (figure 2b,d) are clearly associated with spanwise inflection points. The
varicose disturbance (figure 2c, odd TG) is associated with the wall-normal inflection at
the center of the channel. This type of disturbance was investigated by us previously [5].
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Figure 2. Magnitude of the streamwise component of the secondary disturbance corre-
sponding to the parameters in table 2, obtained by 2d analysis for Re = 1000 and E0 = 10−4.
(a) varicose, even TG; (b) sinuous, even TG; (c) varicose, odd TG; (d) sinuous, odd TG.

To verify the stability analysis we have simulated the evolution of above identified
three disturbances in DNS. The simulation may be initiated at t = 0 with the analytical
expressions of the four modes and the secondary disturbance. Nevertheless, as the TG
is initially algebraic and the separation of time scales associated with the TG and the
secondary disturbance in not valid at very short times, it is useful to initiate the simulation
at some time t0 when the TG becomes slowly varying in comparison with the growth rate
of the secondary disturbance. The amplitude of the secondary disturbance has been
chosen so that the fraction of energy in the secondary disturbance is 1% of the initial TG
energy (e.g. for E0 = 10−4 the secondary disturbance adds the energy ∆E = 10−6 to the
TG at time t0).

The energy growth for the even-sinuous scenario is presented in figure 3a. The energy
during transition is indicated by the solid red line along with the unperturbed TG sce-
nario (without a secondary disturbance) indicated by the red dashed line. The analytical
approximation of the transition scenario using the multiple scales method is given by

Proceedings of the 56th Israel Annual Conference on
Aerospace Sciences, Tel-Aviv & Haifa, Israel
March 9-10, 2016

ThL2T4.1



the solid blue line and the analytical curve for the unperturbed TG is indicated by the
blue dashed line. The rapid transition occurring at t ∼ 90 justifies the multiple time
scales approach and a very good agreement is seen between the DNS and the analytical
approximation. However, a significant difference in the unperturbed TG scenarios is ob-
served. This difference results from higher order nonlinear TG interactions between the
four modes which have not been accounted for in the derivation (e.g. O(ε3)). Neverthe-
less, the good agreement between DNS and theory indicates that the additional nonlinear
TG interactions do not influence the transition scenario significantly. The energy growth
for the odd-varicose scenario is presented in figure 3b. The agreement in this case is very
good as well. Comparing the values of the gain in this scenario with the previous one we
see that the odd TG attains a gain of one order of magnitude less compared to the even
TG. This further demonstrates that maximal energy gain is not essential for transition.
For the odd-sinuous scenario a good agreement has been obtained as well (not shown).
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Figure 3. Energy growth during transition. Comparison between DNS (red) and analytical
(blue) approximation. Unperturbed TG scenarios are indicated by the dashed lines. (a)
sinuous, even TG; (b) varicose, odd TG.

As presented above, the dominant instability of the analytically modeled streaks in
Couette flow is a sinuous one, associated with the spanwise inflection points. However,
in several transitional experiments (e.g. channel flow [7] and pipe flow [8]) the varicose
instabilities have been identified as the most dangerous ones. To understand the reason
for these differences a secondary stability analysis of the experimentally generated streaks
is required. For this purpose a 2d streaky velocity profile in Poiseuille flow is measured
using a hot-wire for Re = 1660 and β ∼ 8. The streak is generated by continuous
injection through a streamwise elongated slit and the experimental setup is described
thoroughly in ref. [7]. The velocity field is presented in figure 4. The ‘strongest inflection’
one-dimensional velocity distributions in the wall-normal (black) and spanwise (magenta)
directions are superimposed on the velocity profile and the strongest inflections are encir-
cled. A secondary stability analysis of the experimental base-flow for confirms that the
varicose mode is the most unstable one for all relevant streamwise wavenumbers. The
streamwise magnitude of the least stable varicose and sinuous eigenfunctions for α = 6.25
is presented in figure 5. It can be seen that the varicose mode is associated with the wall-
normal inflection whereas the sinuous mode is associated with the spanwise inflection
points. The varicose mode is unstable whereas the sinuous mode is stable. Comparing
the eigenfunctions to the ones presented in figure 2 for the Couette TG we see that the
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eigenfunctions associated with the Couette TG span through the whole channel height
while the experimental associated eigenfunctions are much more concentrated in the wall-
normal direction. Thus, for the Couette even TG the wall-normal inflection point, which
forms close to the wall, is unable to trigger instability at all and varicose instability is ev-
ident only for the odd TG. On the other hand, the experimentally generated streaks and
their inflection points are concentrated in a certain region in the flow, which is rather far
from the wall. This allows the wall-normal inflection point to trigger instability efficiently.

Figure 4. Experimental streaks in Poiseuille flow generated by continuous injection (Re =
1660 and β ∼ 8). The strongest inflection 1d velocity distributions in the wall-normal
(black) and spanwise (magenta) directions are superimposed on the velocity profile and
the strongest inflections are encircled. The color indicates the magnitude of velocity.
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Figure 5. Magnitude of the streamwise component of the least stable varicose (a) and
sinuous (b) secondary disturbances of the experimental streaks for α = 6.25.
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IV. Summary and Conclusions

The stability of streaks in has been studied analytically, numerically and experimen-
tally. The most dangerous secondary disturbances of TG in Couette flow have been iden-
tified using the Floquet theory for the two dimensional base-flow U(y, z). The parameters
maximizing the growth rate are associated with the strongest inflection points, i.e. those
having maximal shear, and not maximal energy gain. The optimal secondary sinuous
disturbances, associated with the spanwise inflections (at the center of the channel for
symmetric TG and top/bottom channel-half for antisymmetric TG), are attained for a
spanwise wavenumber of β ∼ 3.6 for both types of TG. The optimal varicose disturbance
for the antisymmetric TG is attained for β = 1.6 and corresponds to the wall-normal
inflection at the center of the channel. The routes to turbulence for the above three
scenarios are explored via DNS initiated by the analytical expressions and the results are
compared successfully with theoretical predictions, obtained by the multiple time scales
method, verifying the latter.

Finally, the above results are compared with previous experimental results obtained
in transitional pipe and Poiseuille flow experiments. The reason for the dominance of
sinuous disturbances (spanwise inflections) for Couette TG is the confinement of the walls
that prohibit growth of varicose disturbances for the even TG. Nevertheless, for several
experimentally generated streaks the effect of the walls on the varicose disturbances (wall-
normal inflection) is negligible, allowing them to become the most dominant ones.
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Appendix A: Amplitude correction

This appendix presents the derivation of the amplitude correction from the O(µδ)
equations given below. The left hand side is identical to the secondary linear stability
problem (ref. [5], eq. (2.6)), whereas the right hand side contains forcing terms which de-
pend on U and ud. The O(µδ) equations for udd = (udd, vdd, wdd)

T and the corresponding
pressure pdd are:

∂udd

∂x
+

∂vdd
∂y

+
∂wdd

∂z
= 0, (A 1a)

∂udd

∂t
+ U

∂udd

∂x
+ vdd

∂U

∂y
+ wdd

∂U

∂z
+

∂pdd
∂x

− 1

Re
∇2udd = Na, (A 1b)

∂vdd
∂t

+ U
∂vdd
∂x

+
∂pdd
∂y

− 1

Re
∇2vdd = Nb, (A 1c)

∂wdd

∂t
+ U

∂wdd

∂x
+

∂pdd
∂z

− 1

Re
∇2wdd = Nc, (A 1d)
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where the right hand side expressions are given by:

Na = −∂ud

∂τ
− V

∂ud

∂y
−W

∂ud

∂z
, (A 2a)

Nb = −∂vd
∂τ

− V
∂vd
∂y

− vd
∂V

∂y
−W

∂vd
∂z

− wd
∂V

∂z
, (A 2b)

Nc = −∂wd

∂τ
− V

∂wd

∂y
− vd

∂W

∂y
−W

∂wd

∂z
− wd

∂W

∂z
. (A 2c)

Solutions of eq. (A 1) are possible only if its right hand side is orthogonal to the conjugate
of the adjoint variables which are the solutions of the homogenous adjoint equations. The
corresponding solvability condition is:

Mz∑
k=−Mz

∫ 1

−1

(
û∗
ak
Na + v̂∗akNb + ŵ∗

ak
Nc

)
dy = 0, (A 3)

where û∗
ak
, v̂∗ak , ŵ

∗
ak

are the conjugate adjoint variables, the derivation of which is detailed
in appendix B. Substituting the expression for the secondary disturbance (5) into the
solvability condition leads to an equation for the amplitude A(τ):

M(τ)
dA

dτ
+N(τ)A(τ) = 0, (A 4)

where M(τ) and N(τ) are given by:

M =
Mz∑

k=−Mz

∫ 1

−1

(
û∗
ak
ûdk + v̂∗ak v̂dk + ŵ∗

ak
ŵdk

)
dy, (A 5a)

N =
Mz∑

k=−Mz

∫ 1

−1

{(
∂ûdk

∂τ
+ V

∂ûdk

∂y
+W

∂ûdk

∂z

)
û∗
ak

+

(
∂v̂dk
∂τ

+ V
∂v̂dk
∂y

+ v̂dk
∂V

∂y
+W

∂v̂dk
∂z

+ ŵdk

∂V

∂z

)
v̂∗ak

+

(
∂ŵdk

∂τ
+ V

∂ŵdk

∂y
+ v̂dk

∂W

∂y
+W

∂ŵdk

∂z
+ ŵdk

∂W

∂z

)
ŵ∗

ak

}
dy. (A 5b)

Consequently, the amplitude is given by

A(τ) = A0 exp

(
−
∫ τ

τ0

N(t′)

M(t′)
dt′

)
, (A 6)

where A0 is the initial amplitude at time τ0.

Appendix B: The adjoint secondary stability problem

This appendix discusses the derivation of the adjoint secondary stability equations.
As the solvability condition relies on the conjugate of the adjoint variables, it is more
convenient to directly derive the conjugate adjoint equations. The equations are derived
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from the regular equations in a manner similar to the one detailed in ref. [9]. First, the
secondary stability equations are written in the form:

dA

dy
= H1A+ iωH2A, (B 1)

where A = (u, v, w, p,Ωx,Ωz)
T represents the regular variables and H1 and H2 are 6x6

matrices (not given here for the sake of brevity). Then, the conjugate adjoint system is
given by

dB∗

dy
= −HT

1B
∗ + iωHT

2B
∗, (B 2)

where B∗ = (B∗
1 , B

∗
2 , B

∗
3 , B

∗
4 , B

∗
5 , B

∗
6)

T represents the conjugate of the adjoint variables.
Giving physical meaning to the components of B∗, the above equations can be reduced
back to a 4x4 system, the solution of which is the conjugate of the adjoint variables
u∗
a, v

∗
a, w

∗
a, p

∗
a:

∂u∗
a

∂x
− ∂v∗a

∂y
+

∂w∗
a

∂z
= 0, (B 3a)

∂u∗
a

∂t
+ U

∂u∗
a

∂x
+

∂p∗a
∂x

− 1

Re
∇2u∗

a = 0, (B 3b)

∂v∗a
∂t

+ U
∂v∗a
∂x

+
∂U

∂y
u∗
a −

∂p∗a
∂y

− 1

Re
∇2v∗a = 0, (B 3c)

∂w∗
a

∂t
+ U

∂w∗
a

∂x
− ∂U

∂z
u∗
a +

∂p∗a
∂z

− 1

Re
∇2w∗

a = 0. (B 3d)

These equations are solved similarly to the regular secondary stability problem by a
Floquet decomposition with respect to the spanwise coordinate (detailed in [5], appendix
C). The calculations were verified by obtaining the same spectrum for both the regular and
conjugate adjoint problems and confirmation that the eigenmodes are indeed orthogonal.
In other words, if ũd is an eigenmode corresponding to the eigenvalue ω1 and ũ∗

a is the
conjugate of the adjoint eigenmode corresponding to ω2, then for ω1 ̸= ω2 the eigenmodes
are orthogonal if

Mz∑
k=−Mz

∫ 1

−1

(
û∗
ak
ûdk + v̂∗ak v̂dk + ŵ∗

ak
ŵdk

)
dy = 0, (B 4)

where we have defined (q = ud,u
∗
a):

q̃ =
Mz∑

k=−Mz

q̂k(t, y)e
iβkz. (B 5)
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