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Recently it has been demonstrated that the generation of counter rotating vortex pair and
hairpin vortices (that are frequently observed in turbulent shear flows) can be attributed to the
interaction of a localized vortical disturbance and the shear of the surrounding base flow. Here we
study the origin and evolution of finite-amplitude localized vortical disturbances in flows having
homogeneous shear. An analytical-based method is developed that can solve the governing equa-
tions in a novel way in Fourier space with Lagrangian co-ordinates. When possible, the new results
are compared with previous ones.
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1 Introduction

During the last fifty years it has become clear that although wall bounded turbulent shear flows are
characterized by unsteady, seemingly chaotic motion, in fact, however, the motion is not random
and it has been observed to be governed by well organized coherent vortical structures. Recently,
combining experimental, numerical and theoretical efforts, we were able to demonstrate [(1), (2),
(3), (4) and (5)] that a simple model, which takes into account only the interaction between a
localized vortical disturbance and a laminar shear base flow, is capable of reproducing the gen-
eration process and characteristics of coherent structures (counter-rotating vortex pairs (CVPs),
streaks and hairpins), naturally occurring in fully developed wall bounded and free turbulent shear
flows. This is schematically shown in figure 1. For the case in which the vortical disturbance is
superimposed on pure shear flow our results have shown that independent of the initial distur-
bance geometry a small amplitude vortical disturbance eventually evolves into a pair of streamwise
vortices, whereas, a sufficiently large amplitude disturbance evolves into a hairpin (or a packet of
hairpins). Moreover, other characteristics such as the spanwise separation between the two elon-
gated vortical regions (expressed in terms of wall units), the inclination angle of the hairpins and
their convective velocity correspond well to those observed in turbulent bounded shear flows. Sim-
ilarly when a vortex dipole is placed in a stagnation flow (or pure extensional flow), like the one
existing in the braid region of a turbulent mixing layer (shown by the red arrows) a pair of CVP is
developed along the principal axis.

1.1 Objective

Following (2) the objective of our work is to develop an accurate and an efficient analytical-based
model which can predict the nonlinear evolution of a localized dipole vortex in base flows having
an arbitrary homogeneous shear.

2 Mathematical approach

We consider the evolution of a finite amplitude localized vortical disturbance in homogeneous planar
shear flow. For the general case the base flow velocity and vorticity fields (in a cartesian system,
x, y and z) can be respectively written as

V =
(
−1

2 (Ω + σ) y, −1
2 (σ − Ω)x, 0

)
, Ω = (0, 0, Ω),

where σ and Ω are two constants representing the shear and vorticity of the base flow. The base
flow is respectively hyperbolic, elliptic or pure shear (Couette flow) if σ > Ω, σ < Ω or σ = Ω. The
equation describing the evolution of a 3D vortex (ω) in incompressible viscous base flow is

∂ω

∂t
+ (V ·∇) ω − (ω ·∇)V − (Ω·∇) v = η ∆ω + (ω ·∇)v − (v ·∇) ω,

where, η is the dynamic viscosity and the disturbance vorticity is given by ω = ∇ × v. The
equations are Fourier transformed and converted into Lagrangian co-ordinates in Fourier space.
The resulted equations are,

dζ1(q, t)
dt

= −1
2

(σ − Ω) ζ2(q, t)− Ω
k1

[
k1 ζ2(q, t)− k2 ζ1(q, t)

]

k2
− η k2 ζ1(q, t) + N1(q, t),
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Figure 1: Effect of interaction between shear flow and a localized disturbance.

dζ2(q, t)
dt

= −1
2

(σ + Ω) ζ1(q, t)− Ω
k2

[
k1 ζ2(q, t)− k2 ζ1(q, t)

]

k2
− η k2 ζ2(q, t) + N2(q, t),

and
ζ3(q, t) = − 1

q3
[ k1 ζ1(q, t) + k2 ζ2(q, t)].

where ζi is the Lagrangian vorticity in Fourier space, k the time-dependent wave vector and q
its initial value. The nonlinear terms are given by the following convolution in the Lagrangian
variables space:

N1(q) =
∫

d 3q′

(k′)2

{
k2

[(
k′3 ζ1(q′)− k′1 ζ3(q′)

)
ζ1(q − q′)−

(
k′2 ζ3(q′)− k′3 ζ2(q′)

)
ζ2(q − q′)

]
+

+k3

[(
k′1 ζ2(q′)− k′2 ζ1(q′)

)
ζ1(q − q′)−

(
q′k ζ3(q′)− k′3 ζ2(q′)

)
ζ2(q − q′)

]}
,

N2(q) =
∫

d 3q′

(k′)2

{
k1

[(
k′2 ζ3(q′)− k′3 ζ2(q′)

)
ζ2(q − q′)−

(
k′3 ζ1(q′)− k′1 ζ3(q′)

)
ζ1(q − q′)

]
+

+k3

[(
k′1 ζ2(q′)− k′2 ζ1(q′)

)
ζ2(q − q′)−

(
k′3 ζ1(q′)− k′1 ζ3(q′)

)
ζ3(q − q′)

]}
.

The equations are solved in the Fourier space with Lagrangian variables using a simple time
stepping and fast fourier transform, with an initial condition of a localized vortical disturbance.
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Figure 2: An initial localized Gaussian disturbance (a), and its interaction with Couette flow (b,c).

The final solution in real space is obtained by the Inverse transform given by:

ωi(r, t) =
∫

d 3q ζi(q, t) ei [ q1 x0(r, t)+q2 y0(r, t)+q3 z0],

where r0(r, t) is an initial position of the fluid particle which at the instant of time t is placed
at the point r. The whole solution procedure is completed within minutes by using the Matlab
software and a home PC.

3 Results

We choose the initial vorticity distribution in the form of a Gaussian vortex (figure 2(a)), given by:

ω(r, t = 0) = ∇F × µ, F = (π1/2δ)−3 exp (−r2/δ2),

where r is the spherical radial co-ordinate, δ is the representative length scale of the disturbance
and µ is the initial fluid impulse. The values of δ = 0.001[m] and η = 10−6[m2/s] (corresponding to
water) are taken in the calculations presented here. The strength of the initial vortex is represented
by ε = ωmax(t = 0)/Ω∗, where ωmax(t = 0) = 0.154µ/δ4 for the Gaussian vortex and Ω∗ =
1
2(|Ω| + |σ|). The magnitude of ε can be used to describe an initial vortex as linear (ε << 1) or
nonlinear.

Figure 2(b) presents the comparison with the results when the base flow is plane Couette with
Ω = σ = −40[1/s]. The dashed line shows the results obtained using the commercial code Fluent by
(4) and full lines by the present method for a nonlinear disturbance with µ = (0, 4.9·10−10, 0)[m4/s]
(ε = 1.875). Figure 2(c) plots the iso-surfaces of vorticity magnitude (|ω|/ωmax = 0.65) for ‘the
Reynolds number of vortex’, Re = Ω∗δ2/η = 40 at T = (tΩ∗) = 2, showing the evolved hairpin.

Next, an Irrotational (or pure extensional) base flow is considered, with Ω = 0 and σ =
−40[1/ sec]. Figure 3(a) shows the comparison with the published results (5) for time T=1. The
match is considered quite well for this nonlinear initial vortex with µ = (2.5 · 10−10, 0, 0)[m4/s]
(ε = 1). Figure 3(b) shows the extended structure of the vortex in real space. The plot is an
iso-contour of the vorticity magnitude (|ω|). The resultant structure is reminiscent of the ribs
commonly found in the braid region of a mixing layer (figure 1).

The last type of base flow represented by a homogeneous shear is the Elliptic flow. Figure 3(c)
shows the vorticity iso-contour top view for T=4.5, superimposed on the base flow with Ω = 40[1/s],
σ = 32[1/s] and µ = (4.5 · 10−12, 0, 0)[m4/s].
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Figure 3: Interaction of a localized Gaussian disturbance with an Irrotational (a,b) and Elliptic
flow (c).

4 Conclusions

The evolution of localized vortical disturbances in homogenous shear can lead to the development
of key structures (e.g. CVPs and hairpin vortices) that have been observed in turbulent and
transitional shear flows. We have developed an analytical-based method, which involves solution
in Fourier space with Lagrangian co-ordinates, that can predict this nonlinear evolution in any
linear base flows, namely Couette, Hyperbolic (in particular, pure extensional) and Elliptical flows.
Comparison to available results in the literature shows high fidelity of the current method.
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