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In the present work we follow the breakdown of pairs of counter-rotating vortices (CVP)
and the consequence formation of packets of hairpins in uniform shear flows. We employ
a recent developed method which is capable of following (numerically) the evolution of
finite-amplitude localized vortical disturbances embedded in shear flows. The solution is
carried out using Lagrangian variables in Fourier space which is convenient and enables fast
computations on a regular PC. Streamwise variation of the CVP is required to generate
concentrated spanwise vorticity which together with the lift-up by the induced velocity and
shear of the base flow generates packets of hairpins. This scenario, obtained ’synthetically’
with minimal simple elements seems to be universal and may explain similar observations
both in fully developed wall-bounded shear flows as well as in wall-bounded transitional shear
flows. This work has been motivated by our previous observation, based on experimental,
numerical and theoretical results, that the formation and characteristics associated with the
structure of a single hairpin, evolved from a dipole vortex, are very similar to the structures
of those composing packets of hairpins in turbulent and transitional shear flows.
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1 Introduction

During the last fifty years it has become clear that although wall bounded turbulent shear
flows are characterized by unsteady, seemingly chaotic motion, in fact, however, the motion
is not random and it has been observed to be governed by well organized coherent vortical
structures. In particular, the observation of counter-rotating streamwise vortices (CVP’s),
which lead to the formation of low and high-speed velocity regions (streaks), observed in the
near wall region, and hairpin-shaped vortices extending across the boundary layer. Since
their first experimental identification by Kline et al. (1), these coherent structures have
come under intense investigations regarding their characterization, generation and suste-
nance mechanisms (e.g (2; 3)). The presence of streaky structures and their further breakup
and appearance of packet of hairpin vortices has been also observed in transitional flows (e.g
in laminar boundary layers (4); pipe flow (5); subcritical channel flow (6; 7)).

The similarity of the coherent structures naturally occurring in different fully developed
boundary turbulent shear flows as well as in transitional flows and free shear layers suggests
the existence of a basic mechanism responsible for the formation of these structures, under
various base flow conditions. The common elements for all such flows are the shear of the base
flow and the presence of a localized vortical disturbance. Recently, combining experimental,
numerical and theoretical efforts, it was demonstrated (8; 9; 10; 11; 12) that a simple model,
which takes into account only the interaction between a localized vortical disturbance and a
laminar shear base flow, is capable of reproducing the generation process and characteristics
of the coherent structures. For the case in which the vortical disturbance is superimposed on
pure shear flow, the results (11; 7) have shown that independent of the initial disturbance
geometry a small amplitude vortical disturbance eventually evolves into a pair of streamwise
vortices, whereas, a sufficiently large amplitude disturbance evolves into a hairpin. Moreover,
other characteristics such as the spanwise separation between the two elongated vortical
regions (expressed in terms of wall units), the inclination angle of the hairpins and their
convective velocity correspond well to those observed in turbulent wall bounded shear flows.

The investigations of the development and characterization of the key coherent structures,
both experimentally and numerically have progressed primarily in two different but comple-
mentary directions. First, the study of coherent structures in fully turbulent/transitional
flows, and second, the investigation of structures in ‘quiet’ laminar base flows by following
artificially generated disturbances. The former has the advantage of being the ‘real’ flow
but the process of investigation is complicated by the noise that is inherent in any turbulent
flow and by the complexity of extraction of the embedded coherent structures. The later is
more suitable to isolate the major effects associated with the coherent structures and is thus
effective to study their formation, growth and decay/breakdown. The major disadvantage
is that the base flow lacks the high shear stress that is associated with the turbulent flows
and the mutual interaction of the coherent structures.

In this article we pursue the second method of investigation by following the minimal
sequence of events required for the generation of packets of hairpins due to the breakup
of synthetic pair of CVP superimposed on a uniform base shear flow. For this purpose
we employ our recent developed method which is capable of following (numerically) the
evolution of finite-amplitude localized vortical disturbances embedded in shear flows (13). An
experimental example of the streaks breakdown and consequent formation of hairpins process
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Figure 1: Visualization of streaky structures and their further breakup and formation of
packet of hairpins in sub-critical horizontal channel flow. Data taken from (6), Re = 1667,
Vinj = 0.29

in subcritical channel flow (6; 7) is shown figure in 1, where for a given Reynolds number
(based on the centerline velocity and half-channel height) the breakdown of the streaks
depends on the nondimensional injection velocity (normalized by the centerline velocity)
through the bottom wall.

2 Mathematical-numerical approach

2.1 Problem formulation

We consider the evolution of a localized vortical disturbance. Accordingly, the initial dis-
turbed vorticity is assumed to be confined to a small region in the flow field. Since the
advection of the small disturbed region as a whole is not of interest, we use a Galilean frame,
moving with the disturbance, instead of the laboratory frame. Taking advantage of the
smallness of the disturbed region, the base flow velocity can be represented to leading order
by its gradient tensor. Here we focus on the case of pure shear for which the velocity and
vorticity vectors (in a cartesian system, x, y and z), are respectively given by

V = (−Ω y, 0, 0) , Ω = (0, 0, Ω) , (1)

where Ω is a constant representing the vorticity of the base flow. The equation describing
the evolution of vorticity (ω) associated with a 3D finite-amplitude localized disturbance in
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incompressible viscous base flow is

∂ω

∂t
+ (V ·∇) ω − (ω ·∇)V − (Ω·∇) v = ν ∆ω + (ω ·∇) v − (v ·∇) ω, (2)

where t is time, ν the kinematic viscosity and the disturbance vorticity ω and velocity v are
related by ω = ∇× v.

In what follows it is convenient to interchangeably associate the cartesian coordinates
x, y and z with the subscripts 1, 2 and 3, respectively. Substituting (1) into (2), the three
equations for the three disturbance vorticity components are

Lω1 − Ω
∂v3

∂x1

= ν∆ω1 + N1, (3a)

Lω2 + Ω ω1 − Ω
∂v3

∂x2

= ν∆ω2 + N2, (3b)

Lω3 − Ω
∂v3

∂x3

= ν∆ω3 + N3, (3c)

where L is the convective operator:

L =
∂

∂t
+ V1

∂

∂x1

=
∂

∂t
− Ω x2

∂

∂x1

, (4)

and Nm, m = 1, 2, 3 represent the corresponding nonlinear terms, i.e

Nm = ωn
∂vm

∂xn

− vn
∂ωm

∂xn

, (5)

for which the summation convention is applied.

2.2 Transformation into Fourier space

The set of equations (3) are first Fourier transformed via

f̂m(k) =
1

(2π)3

∫
fm(r) exp (−ik r) d 3x, fm(r) =

∫
f̂m(k) exp (ik r) d 3k, (6)

where m=1,2,3, f̂m(k) being the Fourier transform and fm(r) its inverse transform, r =
(x, y, z) is the real space physical vector and k its corresponding wave number vector in
Fourier space. The resulted set of equations is:

Lkω̂1(k)− ik1Ωv̂3(k) = −νk2ω̂1(k) + N̂1(k), (7a)

Lkω̂2(k) + Ω ω̂1(k)− ik2Ωv̂3(k) = −νk2ω̂2(k) + N̂2(k), (7b)

Lkω̂3(bk)− ik3Ωv̂3(k) = −νk2ω̂3(k) + N̂3(k), (7c)

where k2 = k2
1 + k2

2 + k2
3 and the operator Lk is given by

Lk =
∂

∂t
+ Ωk1

∂

∂k2

. (8)

The Fourier transform of each one of the products included in Nm (see 5) is the convolution
of the corresponding Fourier transforms. Thus the expression for N̂m(k) can be written as:

N̂m(k) = i

∫
d 3k′

{
kn

[
vm(k′) ωn(k − k′)− vn(k′) ωm(k − k′)

]}
. (9)
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2.3 Transition into Lagrangian variables in k-space

Following (9) the resulted set of equations (7) is expressed in terms of Lagrangian co-ordinates
in the Fourier space. For this, we demand that the operator Lk be the substantial derivative
along an unperturbed trajectory in k- space, i.e,

Lk =
∂

∂t
+ Ω k1

∂

∂k2

≡ d

dt
=

∂

∂t
+

dk1

dt

∂

∂k1

+
dk2

dt

∂

∂k2

+
dk3

dt

∂

∂k3

. (10)

This leads to the following set of equations describing the temporal evolution of the wave
vector k:

dk1

dt
= 0,

dk2

dt
= Ω k1,

dk3

dt
= 0, (11)

the solution of which is:

k1 = q1, k2 = Ω t q1 + q2, k3 = q3, (12)

where the initial value of k(t = 0) = q.
Designating,

ζ(q, t) = ω̂
(
k(q, t), t

)
, (13)

and utilizing the simple algebraic relation between the Fourier transformed velocity and
vorticity vectors, i.e,

v̂(k) = i k−2
[
k × ω̂(k)

]
, (14)

lead to the following final set of equations:

dζ1(q, t)

dt
= −Ω k−2 k1

[
k1 ζ2(q, t)− k2 ζ1(q, t)

]
− ν k2 ζ1(q, t) + N̂1(q, t), (15a)

dζ2(q, t)

dt
= −Ω ζ1(q, t)− Ω k−2 k2

[
k1 ζ2(q, t)− k2 ζ1(q, t)

]
− ν k2 ζ2(q, t) + N̂2(q, t), (15b)

dζ3(q, t)

dt
= Ω k−2 k3

[
k1 ζ2(q, t)− k2 ζ1(q, t)

]
− ν k2 ζ3(q, t) + N̂3(q, t). (15c)

2.4 Numerical procedure

The advantage of the theoretical model described above is that the nonlinear partial differen-
tial equations for the vorticity disturbance in the physical space are replaced by corresponding
ordinary nonlinear equations. In the following a simple numerical procedure is outlined for
solving these equations. We first choose the initial vortical disturbance in the physical space,
transform it into Fourier space where we perform numerical integration of the Lagrangian
variables, and finally, at a predetermined time, the spatial structure of the disturbance vor-
ticity in the physical space is obtained by executing an inverse Fourier transform back to the
physical space. For a given initial vortex the final solution is obtained (within minutes on a
standard laptop) using the software, Matlab. It is noted that, for a similar calculation, the
time required with the commercial software Fluent is more than two orders of magnitude.
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2.4.1 Initial conditions and flow parameters

We consider three different initial conditions associated respectively with the development
of a single hairpin from a localized Gaussian vortex, two hairpins from the streamwise edges
of an elongated Gaussian vortex and the formation of a packet of hairpins from a pair of
counter-rotating streamwise vortices subjected to streamwise waviness of a spanwise vortex
sheet. The first two cases have already been demonstrated by (11) using the Fluent software
and are included here for the sake of completeness and comparison

The vorticity field of a localized Gaussian vortex and its Fourier transform are respectively
given by

ω(r, t = 0) = ∇F × P 0, F = (π1/2δ)−3 exp (−r2
s/δ

2), (16)

ω̂(k, t = 0) = ζ(q, t = 0) =
i

(2π)3
(q × P 0) exp

(
−1

4
q2δ2

)
, (17)

where rs is the spherical radial co-ordinate, δ is the representative length scale of the distur-
bance and P 0 is its initial fluid impulse. The strength of the initial vortex is characterized
by ε = ωmax(t = 0)/|Ω|, where ωmax(t = 0) = 0.154 |P 0|/δ4 for the Gaussian vortex and
ωmax(t) = max |ω(r, t)|. The magnitude of ε is used to describe an initial vortex as linear
(ε << 1) or nonlinear. The effect of viscosity is represented by the ‘vortex Reynolds num-
ber’, Re = |Ω|δ2/ν. For all cases described below we set the parameters to be Ω = 40[1/s],
δ = 0.001[m] and Re = 40. Nonlinearity is essential for the formation of hairpins and hence
we choose ε = 7.5 for the first two cases and ε = 3.75 for the third one.

The second shape of the initial disturbance is that of a horizontal streamwise elongated
Gaussian vortex. Its vorticity field is also defined by equation (16), except for the spherical
radial coordinate rs which is replaced by re, the expression for which is given by:

re =
√

x̄2 + y2 + z2, x̄ =





x− L; |x| > L, x > 0
x + L; |x| > L, x < 0

0; |x| < L,
(18)

where the ratio L/δ determines the disturbance initial elongation. When this ratio equals to
zero, the initial disturbance reduces to that of the Gaussian vortex (equation 16), whereas for
a sufficiently large ratio, it can be approximately considered as a ’streamwise independent’
disturbance. Here we present results for L/δ = 5 and L/δ = 10.

The third case is a superposition of an initial CVP and a wavy spanwise vortex sheet.
The expression for the initial CVP is:

ωx = ε Ω exp (−y2/δ2) · {exp (−(z− d0)
2/δ2) + exp (−(z + d0)

2/δ2)
}

, (19)

where the separation distance between the centers of the two streamwise vortices is 2d0 = 2δ.
The expression for the spanwise vortex sheet is:

ωz = a0 Ω · exp
{− [y − h0 · cos (2π x/λ)]2 /δ2

}
, (20)

where the constants are set to be a0 = 0.5, h0/δ = 0.5 and λ/δ = 10. Scematic 3D views of
the intial vortical structures are shown in figure 2.
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Figure 2: Schematic 3D views of the initial vortices; (a) Gaussian vortex; (b) streamwise
elongated vortex; (c) CVP.
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2.4.2 Numerical integration and calculation of the vorticity components in the
physical space

After the initial vorticity field is transformed into the Fourier space, Eq. (15) is integrated
in time using the Euler method. The evaluation of the convolution sums in the nonlinear
terms on the right hand sides of (15) is carried out by utilizing a pseudospectral transform
method (e.g. (14; 15)).

The vorticity components ωm in the physical space is given by

ωm(r, t) =

∫
d 3k ω̂m(k, t) eik r. (21)

However, this is not a straight forward step because the wave-number vector k depends on
time. To avoid this difficulty the relation between the physical coordinates r0 = (x0, y0, z0),
indicating the coordinates of the initial position of a fluid particle at time t = 0 and the
coordinates r = (x, y, z) where the same particle has arrived at time t (following an unper-
turbed trajectory), has to be derived. To do so we first pass from integration in k space to
integration in q, using the incompressibility condition, i.e, d 3k = d 3q, and the relation

k · r = q · r0. (22)

Finally we obtain

ωm(r, t) = ωm

(
r0(r, t)

)
=

∫
d 3q ζm(q, t) ei [ q1 x0(r, t)+q2 y0(r, t)+q3 z0], (23)

where the relation between the initial position of the fluid particle and the position at time
t, is given by:

x0 = x + Ω t y, y0 = y, z0 = z. (24)

3 Results

In the following the evolution of the three initial vortical fields is described. The resulted
vortex structures are identified by plotting various threshold levels of the vorticity magnitude
or by plotting iso-surfaces of the second invariant Q of the velocity gradient tensor 1 (e.g.
(16), (17)). Length and time scales are normalized by δ and 1/|Ω|, respectively, and denoted
by capital letters.

When a strong initial Gaussian vortex (ε = 7.5) is initially placed in simple shear the
evolved structure is that of a hairpin vortex. The hairpin obtained at T = 5 by the current
method (figure 3b) is compared with the one obtained by (11) using CFD software (figure
3a). The two structures look the same.

In figure 4 the evolved structure of an initially elongated vortex is presented for L/δ = 5
at T = 4.5 (figure 4a) and for L/δ = 10 at T = 5 (figure 4b). Above a certain ratio of
L/δ, two hairpins (at most) are formed at both streamwise ends of the elongated vortex.
(The reader is referred to the discussion in (11) regarding the vortex dynamics in this case).
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Figure 3: Single hairpin evolved from an initial Gaussian vortex. The structure at T = 5 is
shown by iso-surface according to the Q definition for Q/Qmax = 0.5. (a) obtained by (11)
using CFD software; (b) obtained by the current method.
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3

(a) (b)

Figure 4: Pair of hairpins evolved from an initially elongated vortex. The structures are
shown by vorticity iso-surface of ω/ωmax = 0.5. (a) L/δ = 5, T = 4.5; (b) L/δ = 10, T = 5.

Thus, even an infinitely long pair of counter-rotating vortex pair (CVP), similar to the one
presented in figure 2c, can only produce two hairpins.

Therefore, in order to generate a packet of hairpins an additional flow element is required
to introduce streamwise variation of the CVP. This is done by adding a wavy (in x) spanwise
vortex sheet. The (vertically) induced velocity by the CVP distorts the based flow and results
in an inflectional instability which further enhances the streamwise undulation of the vortical
structures and leads to the formation of a packet of hairpins (figure 5). By T = 1.5 (figure
5a) the streamwise waviness of the CVP is already observed, corresponding to the imposed
streamwise wavelength of the spanwise vortex sheet. By T = 2 (figure 5b) the waviness is
distorted and the CVP seems to be composed of six periodical elements. Consequently, at
T = 2.5 (figure 5c) a spanwise vortex segment is formed above the regions connecting two
consecutive streamwise elements of the CVP. With time the top spanwise vortical segments
are widen and join the streamwise vortical elements situated beneath them. Consequently,
a packet of hairpins is formed (see T = 3.5 and T = 4 in figures 5a and 5b, respectively).
This scenario seems to be universal and may explain similar observations in fully developed
wall-bounded shear flows as well as in wall-bounded transitional shear flows (e.g. (18).)

In order to follow the inclination angle of the evolved packet, side views of the ’bridges’
connecting the top spanwise vortical segments (’heads’) with the bottom streamwise vortical
’legs’, are shown in figure 6. It can be seen that by T = 5 the inclination angle is about 45o,
which agrees with previous observations of hairpins in turbulent boundary layers.

1Q = − 1
2AmnAnm, where Aij = ∂vi/∂xj .
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(a) (b) (c)

(d) (e)

Figure 5: The temporal evolution of a packet of hairpins from a wavy spanwise vortex sheet
imposed on a CVP. The structures are shown by iso-surfaces according to the Q definition.
(a) T = 1.5, Q/Qmax = 0.6; (b) T = 2, Q/Qmax = 0.6; (c) T = 2.5, Q/Qmax = 0.3; (d)
T = 3.5, Q/Qmax = 0.3; (e) T = 4, Q/Qmax = 0.3.
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(a)

(b)

(c)

Figure 6: Side views of the temporal evolution of a packet of hairpins from a wavy spanwise
vortex sheet imposed on a CVP. The structures are shown by iso-surfaces according to the
Q definition, Q/Qmax = 0.1. (a) T = 2.5; (b)T=3.5; (c) T = 5.

4 Conclusions

The evolution of localized vortical disturbances in homogenous shear can lead to the develop-
ment of key structures (e.g. CVPs and hairpin vortices) that have been observed in turbulent
and transitional shear flows. We have developed an efficient analytical-based method which
allows to predict the nonlinear evolution of localized vortices in planar homogenous shear
flow. In this novel method, the solution is carried out using Lagrangian variables in Fourier
space. Using this method, it is shown that an initially Gaussian vortex evolves into a sin-
gle hairpin, whereas an initially elongated vortex evolves into a pair of hairpins formed in
its upstream and downstream edges. To generate a packet of hairpins, a streamwise-wavy
spanwise vortex sheet must be added to an initial CVP. The streamwise wavelenghth of the
spanwise sheet determines the number of hairpins in the packet. The undulation of the CVP
is naturally strengthened due to the inflectional instability of the base flow caused by its
distortion when the induced velocity of the CVP becomes significant. The formation of the
hairpins begins by the generation of spanwise vortex segments above the region connect-
ing two consecutive elements of the resulting streamwise-periodic CVP. Side views of the
hairpins show that their inclination angle relative to the base flow is 45o which agrees with
previous observations of hairpins in turbulent boundary layers.
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