
Transition to turbulence in Couette flow

M. Karp and J. Cohen

Faculty of Aerospace engineering, Technion - Israel Institute of Technology,

Haifa 32000, Israel

This paper describes a laminar to turbulent transition scenario in
Couette flow, triggered by the transient growth mechanism. An analyti-
cal derivation of a growing disturbance corresponding to counter rotating
vortices embedded in Couette flow allows performing a secondary linear
stability analysis of the perturbed flow. Based on the comparison with
direct numerical simulation results, it is argued that a significant tran-
sient growth is not a prerequisite for transition and that the role of the
initial transient growth is to generate a strong wall-normal inflectional
point rather than maximal growth.

I. Introduction

Despite much progress in the field of fluid mechanics over the last century, prediction
of transition to turbulence - namely, the critical Reynolds number separating the laminar
and turbulent regimes, remains a puzzling issue. At first, linear stability theory (LST)
was used to calculate the critical Reynolds number for given flow conditions. However,
for some basic flows, such as plane Couette flow, the LST has not been successful in
predicting the critical Reynolds since the flow is linearly stable (e.g. [1]). Nevertheless,
experimentally transition is observed at Reynolds numbers greater than Re ∼ 360, where
Re is based on the wall velocity and half the channel height. A possible explanation for
such transition phenomenon has been proposed by the inviscid mechanism of non-modal
growth where the disturbance grows linearly with time [2]. This was shown for a three
dimensional disturbance which does not vary in the streamwise direction. For a viscous
base flow, it was shown [3] that a disturbance can achieve initial significant growth before
its eventual decay due to viscous effects. This mechanism is called transient growth.
Therefore, a possible explanation for transition in linearly stable flows is that a small
disturbance is amplified significantly by transient growth such that nonlinear effects are
triggered leading to transition. Much research has been devoted to find the initial optimal
disturbances which yield the maximal growth over a given time or distance. It was shown
that the maximal growth is obtained by a disturbance initially consisting of a pair of
nearly streamwise independent counter rotating vortices (CVPs), e.g. [4]. Those vortices
create streamwise streaks which vary along the spanwise direction (with a wavenumber β)
by lifting low momentum fluid into a region of high momentum fluid and vise versa. The
CVPs mainly consist of a pair of nearly parallel least stable modes, as demonstrated by [5]
and [6]. Numerical simulations have shown that these streaks may undergo secondary
instability [7] and can lead to transition to turbulence (e.g. [8] for pipe flow).

In this paper we show that transient growth can be achieved using only four decaying
modes. Furthermore, it is argued that a significant transient growth is not a prerequisite
for transition; the existence of an inflection point is at least as important. This is demon-
strated by a transition scenario based on transient growth consisting of four modes and
a secondary infinitesimal disturbance.
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The following section describes the mathematical method, containing the analytical
model, stability analysis and direct numerical simulation (DNS), followed by results and
conclusions.

II. Mathematical Method

A. Analytical Model For Transient Growth

Ben-Dov et. al. have shown that the basic mechanism of transient growth can be ex-
plained by considering only the pair of least stable modes [5], with an analytical predic-
tion of the time at which the maximum energy amplification of the initial disturbance
is achieved. However, the maximum growth obtained by the least stable pair is not well
predicted. Following [5] we propose that including another pair of modes and determin-
ing the optimal ratios between the four modes allows a good analytical prediction of the
full amplification curve. The second pair should be anti-symmetric (symmetric) if the
first pair is anti-symmetric (symmetric), this kind of disturbance is referred as an odd
(even) disturbance, consisting of a pair of CVPs (two pairs of CVPs). Figure 1 shows a
comparison between the optimal curve based on many modes (black) and an analytical
curve based on only four modes (red) for an odd disturbance, Re = 3000 and β = 1.66.
It can be seen that the analytical curve provides a good approximation for the optimal
one. The initial transient growth disturbance has the following form:

u(y, z) = Re

{
4∑

m=1

Amum(y)e
iβz

}
(1)

where um are the modes obtained from the LST analysis for the given spanwise wavenum-
ber β, applied to Couette flow. The coefficient A4 is set to be 1 and the remaining three
coefficients are optimized in order to maximize the growth.

Following the discovery of transient growth, the main objective was obtaining the
optimal disturbance yielding the maximal growth (e.g. [9]). However, later investigations
have shown that other flow structures may lead to turbulence with lower initial thresholds
(e.g. transition with oblique waves [10]). We propose that the role of the initial distur-
bance is mainly to generate an inflectional point in the wall-normal velocity profile. In
order to demonstrate this we choose an even disturbance for which the maximum growth
is about an order of magnitude lower than the corresponding odd mode (for Re = 3000
and β = 1.66 the maximal growth of the even disturbance is ∼ 720 comparing to ∼ 104

of the odd disturbance).
The importance of the inflectional point can be evaluated by performing a secondary

stability analysis of the perturbed base flow (Couette flow plus CVPs). The analytical
expression of the streamwise velocity and its simple dependance on the spanwise coordi-
nate (z) allows deriving a simple form of the eigenvalue problem. The stability analysis
is utilized to obtain the optimal disturbances and their corresponding growth rates.

The analytical derivations for the transient growth and the stability analysis are veri-
fied using the DNS software ‘Channelflow’ [11]. The DNS is also used to obtain transition
scenarios using the secondary disturbances from the stability analysis.

B. Stability Analysis

A two dimensional linear stability analysis is performed to a base flow having the form
U = (U0(y, z), 0, 0) where y and z are the wall-normal and the spanwise directions,
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respectively (e.g. [12]). The analysis is conducted using the Floquet theory for the periodic
base-flow in the spanwise direction, i.e. U0(y, z+2πβ) = U0(y, z). A necessary assumption
for performing the stability analysis is that the time scale of the streak transient growth
and decay is much smaller than the time scale associated with the growth of the secondary
instability. This allows separation of time scales and performing the stability analysis for
a particular ‘frozen’ time. Another assumption is that relative to the streamwise velocity,
the wall-normal and spanwise velocities of the base flow are negligible.

We assume a secondary disturbance of the form:

q = ei(αx−ωt)

Mz∑
k=1

q̂k(y)e
iβkz (2)

where q = (u; v;w; p), α is the streamwise wavenumber and ω is the temporal complex
eigenvalue. Substituting the disturbance in the linearized Navier-Stokes equations allows
obtaining an eigenvalue problem for the calculation of the eigenvalues ωn and the eigen-
functions (un; vn;wn; pn), where the subscript n indicates the n-th eigenvalue for given
α, β and Re. The use of an analytical expression for the base flow allows convergence for
relatively small values of Mz and it is found that Mz = 5 is sufficient in order to obtain
the eigenvalues within accuracy of 0.5%. The eigenvalue problem is solved numerically
using Matlab with 101 Chebyshev modes in the wall-normal direction.

C. Direct Numerical Simulation

The computation of the transition scenario is performed using Gibson’s well-tested ‘Chan-
nelflow’ DNS software [11]. The simulation code is pseudospectral, using Fourier modes
in the x and z directions and Chebyshev (collocation) modes in the y direction with
no-slip and impermeability on the walls at y = ±1. The computational box contains a
single wavelength in the streamwise and spanwise directions Lx = 2π/α, Lz = 2π/β. The
results are obtained on a grid containing (64, 65, 64) points in the x, y and z directions,
respectively. It is found that increasing the number of modes improves the accuracy,
however, its influence on the disturbance energy is minor. In order to remove aliasing the
3/2 rule is applied so that the number of corresponding Fourier modes is N ′

x,z = 2
3
Nx,z.

The time step is chosen to obtain an initial Courant-Friedrichs-Lewy (CFL) number of
0.17.

III. Results

The disturbance growth is calculated from its energy, given by the volumetric integral:

G(t) =

∫
(u2 + v2 + w2)dx, (3)

normalized by its initial value G0 = G(t = 0).
The transient growth of an odd disturbance obtained from the analytical derivation is

simulated using the DNS for Re = 3000 and β = 1.66. Figure 2 shows a comparison of the
DNS results (marked by the blue circles) with the linear analytical prediction based on
four modes (solid yellow line) and there is a good agreement between the two. The good
agreement is an outcome of the low initial amplitude (1/Re) used in this case, justifying
the neglect of the nonlinear terms.
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As the amplitude of the disturbance is increased, the nonlinear terms become more
dominant and a deviation between the linear analytical prediction based on four modes
(solid yellow line) and the DNS (marked by the black crosses) is observed, as evident from
figure 3. The figure shows a comparison between linear theory and DNS for the higher
amplitude 5/Re. Note that both curves are normalized by their corresponding initial
values, which gives the wrong impression that the nonlinear case (DNS) grows less.

The stability analysis is performed for Re = 1000 and a secondary disturbance having
streamwise and spanwise wavenumbers of α = 1 and β = 1, respectively. Although the
maximum growth of the odd mode is ∼ 800, we choose to perform the analysis for an
even mode having a maximal growth of ∼ 40 achieved at t/Re ∼ 0.065 (see the red curve
at figure 5). The most unstable eigenvalue for various times is shown in figure 4. At t = 0
the streaks have not yet been formed and the streamwise disturbance is very weak, such
that the obtained eigenvalue corresponds to the eigenvalue associated with LST of pure
plane Couette flow for Re = 1000 and α = 1 which gives the growth rate ωi = −0.1192.
As time is increased, the flow becomes less stable and instability is obtained for t > 10.

In order to verify the instability of the above even disturbance we have simulated
a perturbed transient growth with the addition of a secondary disturbance having very
small magnitude. The secondary disturbance is obtained by the stability analysis for the
time t = 20. This resulted in transition to turbulence. The resulting energy growth is
shown in figure 5 by the blue line. The linear transient growth is shown as reference by
the red line. It can be seen that the disturbance energy follows the transient growth up
to t/Re ≈ 0.04 when the growth becomes significant and the flow undergoes transition.

The importance of the wall-normal inflection point, circled in the left of figure 6, can
be understood by examining the shape of the streamwise velocity eigenfunction obtained
using the secondary stability analysis. As shown in the right of figure 6, the secondary
disturbance is concentrated mainly around (y, z) = (0, π/β) where the base flow possesses
a wall-normal inflectional point. This suggests that the role of the initial transient growth
is to generate a strong wall-normal inflectional point rather than maximal growth.

IV. Conclusions

It is shown that four decaying modes are sufficient to approximately follow the tran-
sient growth scenario in plane Couette flow. This enables us to follow the stability of
the evolving flow during transient growth. The results suggest that the role of the ini-
tial transient growth is to generate a strong wall-normal inflectional point rather than
maximal growth.
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Figure 1. Transient growth for an odd disturbance, Re = 3000 and β = 1.66. Comparison
between the optimal disturbance and an analytical prediction based on four modes

Figure 2. Transient growth for an odd disturbance, Re = 3000 and β = 1.66. Comparison
between linear analytical prediction based on four modes (solid yellow line) and DNS
(marked by the blue circles) for the disturbance having the amplitude 1/Re
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Figure 3. The energy gain for an odd disturbance, Re = 3000 and β = 1.66. Comparison
between linear analytical prediction based on four modes (solid yellow line) and DNS
(marked by the black crosses) for the disturbance having the amplitude 5/Re
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Figure 4. Growth rate of the least stable mode at various times, obtained by secondary
stability analysis for an even disturbance with Re = 1000, α = 1, β = 1
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Figure 5. A transition scenario for an even disturbance Re = 1000, α = 1, β = 1. The
unperturbed transient growth is given for reference
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Figure 6. Left: base flow velocity at z = π/β for Re = 1000, β = 1 and t = 20, the wall-
normal inflectional point is circled. Right: streamwise secondary disturbance at t = 20 for
Re = 1000, α = 1 and β = 1
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