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This paper describes a study of transition in Couette flow initiated by
the transient growth mechanism. It is shown that four modes obtained
analytically are sufficient to model the transient growth. The analyt-
ical approximation allows performing a secondary stability analysis of
the modified baseflow consisting of the Couette flow and a transient
growth perturbation. The predictions of the secondary stability analysis
are verified by checking whether transition occurs in a direct numerical
simulation (DNS) initiated by the analytical expressions. Finally, the
capability of the analytical expressions to capture some of the transition
stages is tested.

I. Introduction

Despite much progress in the field of fluid mechanics over the last century, prediction
of transition to turbulence - namely, the critical Reynolds number separating the laminar
and turbulent regimes, remains a puzzling issue. At first, linear stability theory (LST)
has been used to calculate the critical Reynolds number for given flow conditions. How-
ever, for some basic flows, such as plane Couette flow, the LST has not been successful in
predicting the critical Reynolds since the flow is linearly stable (e.g. [1]), whereas transi-
tion has been observed in experiments at Reynolds numbers greater than Re ∼ 360. A
possible explanation for such transition phenomenon has been proposed by the mecha-
nism of non-modal growth where a disturbance can grow linearly with time in an inviscid
base flow [2]. Such a disturbance is a three-dimensional one which is invariant along the
streamwise direction. For viscous base flows, it has been shown [3] that a disturbance
can achieve initial significant growth before its eventual exponential decay due to viscous
effects. This mechanism is called transient growth. Thus, a possible explanation for tran-
sition in linearly stable flows could be that a small disturbance is amplified significantly by
transient growth such that nonlinear effects are triggered and transition occurs rapidly,
before the disturbance decays. Much research has been carried out to find the initial
optimal disturbances which yield the maximal growth over a given time or distance. It
has been shown that the maximal growth is obtained by a disturbance initially consisting
of a pair nearly streamwise independent counter-rotating vortices. These vortices create
streamwise streaks which vary along the spanwise direction (with a wavenumber β) by
lifting low momentum fluid into a region of high momentum fluid and vise versa. The
counter-rotating vortices mainly consist of a pair of nearly parallel least stable modes, as
demonstrated by [4] and [5]. Numerical simulations have shown that these streaks may
undergo secondary instability [6] and can lead to transition to turbulence (e.g. [7] for pipe
flow).

In this paper we show that linear transient growth can be modeled using only four
modes which are obtained analytically. The analytical approximation allows performing
a secondary stability analysis of the perturbed baseflow consisting of the Couette flow
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and a transient growth disturbance. The predictions of the secondary stability analysis
are verified by checking whether transition occurs in a DNS initiated by the analytical
expressions. Finally, the ability of the analytical expressions to follow the transition
stages is discussed.

II. Mathematical Method

The linear transient growth is traditionally estimated from the gain, G(t), of the
disturbance kinetic energy, E(t), at time t normalized by its initial value, E(t = 0),
where the energy is defined by the volumetric integral over the whole domain, i.e.,

G(t) =
E(t)

E(t = 0)
; E(t) =

1

4LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0

(u2 + v2 + w2)dxdydz. (1)

Here, x = (x, y, z) is the position vector for which x, y and z are the streamwise, wall-
normal and spanwise coordinates, respectively, and u, v and w are the corresponding
velocity components. A pair of nearly parallel least stable modes is sufficient to under-
stand the physical mechanism of transient growth, but does not predict the growth of
the disturbance [4]. However, as we show, the addition of a second pair of modes allows
obtaining a good analytical approximation to transient growth (i.e, the approximation is
based on four modes). The modes are obtained by solving the well known Orr-Sommerfeld
(OS) equation for the vertical velocity (v) and the Squire (Sq) equation for the vertical
vorticity (η = ∂u

∂z
) for the case of streamwise independent perturbations:{

∂

∂t
− 1

Re
∇2

}
∇2v = 0, (2a){

∂

∂t
− 1

Re
∇2

}
η = Ω

∂v

∂z
, (2b)

where Ω = −dU0

dy
is the baseflow vorticity. The boundary conditions are:

η(y = ±1) = 0; v(y = ±1) = 0; Dv(y = ±1) = 0, (3)

where D ≡ ∂
∂y
. It is assumed the disturbance has the spanwise wavenumber β and the

temporal eigenvalue ω:

q = q̃(y)eiβz−iωt, (4)

where q = (u; v;w; p). The solution of the above equation yields many modes, including
even (symmetric) modes as well as odd (antisymmetric) ones. We proceed by taking
only four (least stable) modes as an approximation to the transient growth disturbance.
Consequently, the disturbance has the following form:

u1(t, y, z) = ℜ

{
4∑

m=1

Amum(y)e
iβz−iωmt

}
. (5)

The ratios between the four modes, i.e. the coefficients Am, are found by letting A4 = 1
and optimize the remaining three coefficients to maximize the energy growth. It should
be noted that the coefficients are obtained analytically. The optimal even disturbance
(based on four even modes) corresponds to a single Counter-rotating Vortex Pair (CVP)
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centered at the middle of the channel, whereas the optimal odd disturbance (based on
four odd modes) corresponds to two CVPs, placed symmetrically in the top and bottom
parts of the channel. These patterns of the initial even and odd optimal disturbances
agree well with previously obtained numerical results based on numerous modes (e.g. [8]).

During the validation of our four mode approximation with DNS (not shown here)
we discovered that nonlinear interactions play an important role in the stability of the
modified baseflow (Couette plus transient growth perturbation). Therefore, an asymp-
totic expansion has been performed to find the nonlinear modification of the transient
growth. Accordingly, the velocity field has been written by (A0 ≪ 1),

u = U 0(y) + A0u1(t, y, z) + A2
0u2(t, y, z) + · · · (6)

where U 0(y) = (0, y, 0) is the Couette flow, A0u1 describes the transient growth pertur-
bation (four modes) and A2

0u2 its nonlinear modification. The latter has been calculated
by substituting eq. (6) into the incompressible Navier-Stokes equations and writing the
equations at order O(A2

0). This leads to the following equations for v2 and η2 =
∂u2

∂z
:{

∂

∂t
− 1

Re
∇2

}
∇2v2 = − ∂

∂z

{
∂Rb

∂z
− ∂Rc

∂y

}
, (7a){

∂

∂t
− 1

Re
∇2

}
η2 = Ω

∂v2
∂z

− ∂Ra

∂z
, (7b)

subjected to the following boundary and initial conditions:

η2(t = 0) = 0; η2(y = ±1) = 0; v2(t = 0) = 0; v2(y = ±1) = 0;Dv2(y = ±1) = 0, (8)

where D ≡ ∂
∂y
. The right hand side expressions are given by interactions among the four

modes constituting the transient growth (u1):

Ra = v1
∂u1

∂y
+ w1

∂u1

∂z
, (9a)

Rb = v1
∂v1
∂y

+ w1
∂v1
∂z

, (9b)

Rc = v1
∂w1

∂y
+ w1

∂w1

∂z
. (9c)

These equations have been solved using Duhamel’s principle.
The analytical expressions for the velocity field allow performing a secondary stability

analysis of the modified baseflow. As the modified baseflow depends on both wall-normal
and spanwise directions, a two dimensional linear stability analysis is necessary (e.g. [9]).
The analysis is conducted using the Floquet theory since the baseflow is periodic in the
spanwise direction with the wavelength 2π/β. A necessary assumption for performing
the stability analysis is that the time scale of the streak transient growth and decay is
much smaller than the time scale associated with the growth of the secondary instability.
This allows separation of time scales and performing the stability analysis for a particular
‘frozen’ time. Another assumption is that relative to the streamwise velocity, the wall-
normal and spanwise velocities of the base flow are negligible. We assume a secondary
disturbance of the form:

q = ei(αx−ωt)

Mz∑
k=−Mz

q̂k(y)e
iβkz (10)
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where q = (u; v;w; p), α is the streamwise wavenumber and ω is the temporal complex
eigenvalue. Substituting the disturbance in the linearized Navier-Stokes equations allows
obtaining an eigenvalue problem for the calculation of the eigenvalues ωn and the eigen-
functions (un; vn;wn; pn), where the subscript n indicates the n-th eigenvalue for given
Re, α, β and ts (the ‘frozen’ time for the stability analysis). The use of an analytical
expression for the base flow allows convergence for relatively small values of Mz and it is
found that Mz = 5 is sufficient to obtain the eigenvalues within accuracy of 0.5%. The
eigenvalue problem is solved numerically using MATLAB with 101 Chebyshev modes in
the wall-normal direction.

The predictions of the secondary stability analysis are verified by checking whether
transition occurs when simulating the secondary disturbance in the modified baseflow.
The DNS is initiated by the analytical expressions, with most of the initial energy in
the transient growth perturbation and a very small fraction of energy in the secondary
disturbance. The simulation used in this study is Gibson’s well-tested ‘Channelflow’
DNS software [10]. The simulation code is pseudospectral, using Fourier modes in the x
and z directions and Chebyshev (Collocation) modes in the y direction with no-slip and
impermeability on the walls at y = ±1. The computational box contains five wavelengths
in the streamwise direction and a single wavelength in the spanwise direction Lx =
10π/α, Lz = 2π/β. The results are obtained on a grid containing (256, 65, 64) points in
the x, y and z directions, respectively. It is found that increasing the number of modes
improves the accuracy, however, its influence on the disturbance energy is minor. In order
to remove aliasing the 3/2 rule is applied so that the number of corresponding Fourier
modes is N ′

x,z = 2
3
Nx,z. The time step is chosen to obtain an initial Courant-Friedrichs-

Lewy (CFL) number of 0.17.
To summarize this section, our velocity field consists of four analytically obtained

elements:
u = U 0(y) + A0u1(t, y, z) + A2

0u2(t, y, z) + Adud(t, x, y, z) (11)

where U 0(y) = (0, y, 0) is the Couette flow, A0u1 describes the transient growth pertur-
bation (four modes), A2

0u2 its nonlinear modification and Adud(t, x, y, z) the secondary
disturbance obtained from the stability analysis.

III. Results

The energy growth of the optimal odd transient growth disturbance at Reynolds
number of Re = 1000 and a spanwise wavenumber β = 1 is shown by the black solid
line in figure 1. The corresponding analytical curve based on four modes is shown by
the dashed red line. It can be seen that the analytical approximation follows closely the
optimal curve based on numerous modes.

An example of a transition scenario for the case above (odd perturbation, Re = 1000
and β = 1) is indicated by the blue solid line in figure 2. The initial energy (per unit
volume) of the total disturbance has been set to E0 = 2.66 × 10−4 (corresponding to
A0 = 0.01), where the energy of the secondary disturbance is Ad = 0.09% of the total
disturbance energy. The secondary disturbance is based on a stability analysis which
includes nonlinear interactions at ts = 20 for α = 1. The unperturbed transient growth
scenario (Ad = 0) is presented as well by the dashed red line. Initially both curves grow
together until transition occurs rapidly at t ≈ 45.

A transition scenario for the even transient growth perturbation has been obtained is
a similar manner for Re = 1000 and β = 2 using the same total initial energy and fraction
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Figure 1. Energy growth curve for the odd disturbance for Re = 1000 and β = 1, comparison
between the analytical curve based on four modes and the optimal curve based on many
modes.
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Figure 2. Energy growth obtained by DNS based on four odd modes and a secondary
disturbance for Re = 1000, β = 1 and E0 = 2.66 × 10−4. The secondary disturbance is based
on a stability analysis which includes nonlinear interactions at ts = 20 for α = 1. The solid
line corresponds to Ad = 0.09%. The unperturbed transient growth (Ad = 0) is given for
reference (dashed line).

346



of energy in the secondary disturbance (E0 = 2.66× 10−4, Ad = 0.09%). The secondary
disturbance is based on a stability analysis which includes nonlinear interactions at ts = 20
for α = 1. The transition scenario is indicated by the blue solid line in figure 3 together
with the unperturbed transient growth scenario (Ad = 0) indicated by the dashed red line.
It can be seen that the transition occurs rapidly in a similar manner to the odd scenario.
Comparing between the even and the odd scenarios we observe that the unperturbed
even transient growth reaches a higher kinetic energy gain (Gmax ∼ 460 and Gmax ∼ 40
for the even and odd perturbations, respectively). Nevertheless, after transition occurs
the gain in both cases attains similar values (G(t) ∼ 250− 320).

0 25 50 75 100 125 150
0

100

200

300

400

500

600

t

G
(t

)

Figure 3. Energy growth obtained by DNS based on four even modes and a secondary
disturbance for Re = 1000, β = 2 and E0 = 2.66 × 10−4. The secondary disturbance is based
on stability analysis which includes nonlinear interactions at ts = 20 for α = 1. The solid
line corresponds to Ad = 0.09%. The unperturbed transient growth (Ad = 0) is given for
reference (dashed line).

The evolution of the vortical structures corresponding to the odd transition scenario
shown in figure 2 is presented in figure 4. To identify the vortical structure, Q, the second
invariant of the velocity gradient tensor, is used (Q = −0.5∂ui/∂xj · ∂uj/∂xi [11]). Only
half of the domain is shown since the structures evolve symmetrically with respect to the
y axis (for each hairpin moving downstream in the top-half domain there is a hairpin
moving in the opposite direction in the bottom-half domain). The initially streamwise
CVP (figure 4a) experiences a streamwise symmetric wavy modulation, which is enhanced
by t = 15 (figure 4b). At t = 25 (figure 4c) streamwise-periodical spanwise vortical
segments are formed above the wavy CVP which later join with the streamwise vortical
elements situated beneath them. Consequently, a packet of hairpins is formed (t = 40,
figure 4d). The packet further intensifies and the hairpin ‘heads’ become more localized
having a shape of loops (t = 50, figure 4e). Shortly afterwards (not shown here) the flow
becomes turbulent.

The evolution of the vortical structures corresponding to the even transition scenario
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shown in figure 3 is presented in figure 5. The initially streamwise CVP (figure 5a)
experiences a streamwise antisymmetric wavy modulation, which is enhanced by t = 20
(figure 5b). By t = 35 (figure 5c) the vortices split and each element splits again by
t = 55 figure (5d). Finally, just before transition occurs, oblique alternating vortices are
formed in the lower-middle and upper-side parts of the computational domain (t = 65,
figure 4e).

Next we try to follow analytically the above DNS vortex dynamics using the analytical
expressions for u1(t, y, z),u2(t, y, z) and ud(t, x, y, z) in eq. (11). The temporal evolution
of the transient growth is known. On the other hand, although the growth rate and
eigenfunction of the secondary disturbance ,ud(t, x, y, z), are known for any given time,
its overall integrated temporal evolution has not been derived analytically. Nevertheless,
for the purpose of this section the secondary disturbance is assumed to have a constant
growth rate and a fixed eigenfunction corresponding to a specific time. Here we choose
this time to be ts = 20 since this is the time used to obtain the secondary disturbances
that initiated the DNS.

The temporal vortical dynamics based on eq. (11) for the parameters of the odd
transition (figure 4) are presented in figure 6. It can be seen that all essential stages
described earlier for the DNS simulation appear here too (figures 4a,b,c,d compared
with figures 6a,b,c,d, respectively), except the final stage (figure 4e) at which additional
nonlinear interactions should be taken into account. The corresponding temporal vortical
dynamics for the parameters of the even transition (figure 5) are presented in figure 7. As
in the odd scenario, the initial stages are captured quite well here too. However, the last
two stages before transition (figures 5d,e) are not captured well probably due to additional
nonlinear effects which have not been derived at this stage. Because of the assumption on
the temporal evolution of the secondary disturbance, the different stages are well captured
but not at the right times. Nevertheless, it is clear that the physical process is obtained
correctly. Choosing different ts for obtaining the secondary disturbance eigenvalue and
eigenfunction, leads to the same stages of evolution that occur at different times. It can
be seen that the relatively small number of modes in the analytical approximation enables
us to follow most of the process analytically.

IV. Conclusions

It is shown that four decaying modes are sufficient to approximately follow the tran-
sient growth scenario in plane Couette flow. This enables us to follow analytically the
early stages of the transition scenario. This is demonstrated for two types of transient
growth perturbations. Future research will include the sensitivity to various parameters
such as Re and β.
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 (a) (b)  (c)  
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Figure 4. Vortex dynamics during transition as obtained from DNS based on an odd
transient growth perturbation. Only half of the domain is shown since the structures
evolve symmetrically with respect to the y axis. (a) t = 0, Q/Qmax = 0.7; (b) t = 15,
Q/Qmax = 0.7; (c) t = 25, Q/Qmax = 0.3; (d) t = 40, Q/Qmax = 0.3; (e) t = 50, Q/Qmax = 0.11.
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 (c)  

(d)  (e)  

Figure 5. Vortex dynamics during transition as obtained from DNS based on an even
transient growth perturbation. (a) t = 0, Q/Qmax = 0.7; (b) t = 20, Q/Qmax = 0.7; (c) t = 35,
Q/Qmax = 0.7; (d) t = 55, Q/Qmax = 0.7; (e) t = 60, Q/Qmax = 0.7.
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Figure 6. Vortex dynamics during transition as obtained analytically for the odd transient
growth perturbation. The secondary disturbance is assumed to have a constant growth
rate and eigenfunction corresponding to ts = 20. The plotting method is identical to figure
4. (a) t = 0, Q/Qmax = 0.7; (b) t = 10, Q/Qmax = 0.7; (c) t = 20, Q/Qmax = 0.3; (d) t = 30,
Q/Qmax = 0.3; (e) t = 40, Q/Qmax = 0.3.
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 (c)  

(d)  (e)  

Figure 7. Vortex dynamics during transition as obtained analytically for the even transient
growth perturbation. The secondary disturbance is assumed to have a constant growth rate
and eigenfunction corresponding to ts = 20. (a) t = 0,Q/Qmax = 0.7; (b) t = 5, Q/Qmax = 0.7;
(c) t = 10, Q/Qmax = 0.7; (d) t = 15, Q/Qmax = 0.7; (e) t = 20, Q/Qmax = 0.7.
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