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A transition to turbulence scenario in plane Poiseuille flow (PPF)
initiated by Transient Growth (TG) associated with four streamwise
elongated vortices is studied. Although the energy growth of this initial
disturbance is less than that associated with two vortices, this com-
bination is chosen because of its ability to generate relatively strong
wall-normal inflection points in the velocity profile. It is shown that the
TG stage is well approximated by using only the first five least stable
even modes. Furthermore, the temporal modification of the base-flow
includes the development of an inflection point in the wall-normal di-
rection. Consequently, the modified base-flow becomes unstable with
respect to three-dimensional infinitesimal secondary waves. The analyt-
ical predictions of key stages during this process are validated by direct
numerical simulation (DNS). Moreover, the temporal evolution of the
vortical structures through the process is well captured by the analytical
model except for the last stage before breakdown to turbulence, where
a packet of hairpin vortices is formed.

I. Introduction

Linear Stability Theory (LST) based on normal modes fails to predict instability in
wall-bounded shear flows. In particular for PPF the critical Re number, based on cen-
terline velocity and half channel height, is 5772 [1], whereas experimental investigations
have shown that the transitional Reynolds number,i.e. the lowest Reynolds number for
which turbulence can be sustained, is Re ≈ 1000 [2, 3].

An alternative instability mechanism was first proposed by Ellingsen & Palm [4], who
showed that for an inviscid fluid, the streamwise velocity component of a 3d disturbance
with no streamwise variation grows linearly with time (unlike the exponential growth
of normal modes). The inclusion of viscosity leads to the TG scenario in which the
disturbance increases transiently and may reach a significant amplitude that can trigger
nonlinear mechanisms before its eventual long-time exponential decay owing to viscous
effects e.g. [5, 6].

It has been found by Gustavsson [7] for PPF that the initial structure in the linear case
for which the kinetic energy amplifies the most is independent of the streamwise coordi-
nate. Furthermore, two types of disturbances were found: symmetric and anti-symmetric
ones; the latter achieving higher energy growth. The anti-symmetric disturbance con-
sists of a counter-rotating vortex pair (CVP) whereas the symmetric one consists of two
CVP’s, one in the top half of the channel and the other in the bottom half (i.e. four
vortices, see also [8]).

Transition scenarios in PPF initiated by two streamwise vortices (CVP) and a sec-
ondary disturbance, in the form of noise, have been investigated by Lundbladh et al. [9].
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Accordingly, the CVP’s modify the base-flow by forming streaks and generating inflection
points. Stability analysis of the modified base-flow (PPF with the addition of a CVP) has
been performed for the anti-symmetric disturbance by Reddy et al. [10]. They found that
sinuous type instabilities, associated with spanwise inflection points, are more dominant
than varicose instabilities, except at small vortex amplitudes. It should also be noted
that the sinuous type instabilities play a key role in the destabilization of the flow during
the self-sustaining process proposed by Waleffe [11].

The purpose of the present work is to investigate the transition scenario initiated by
TG of four streamwise elongated vortices. This scenario has been much less studied in
comparison with the TG initiated by a pair of vortices due to their greater TG potential.
However, as demonstrated by Karp & Cohen [12] for Couette flow, maximal energy growth
is not the essential parameter, rather it is the ability to generate inflection points in the
base velocity profile. In order to validate our model, a comparison between the analytical
and DNS results will be done.

II. Method

We consider a PPF in which the base-flow is parallel and is given by U = 1 − y2,
where U is the normalized streamwise base-flow velocity and y ∈ [−1, 1] is the wall-
normal direction, subjected to a primary 3d infinitesimal disturbance velocity. Assuming
a normal mode solution, i.e. [ũ, ṽ, w̃, p̃] = [u, v, w, p](y) exp(i(αx + βz) − iωt), where
x ∈ (−∞,∞) and z ∈ (−∞,∞) are the streamwise and spanwise directions, respectively,
α and β are the streamwise and spanwise wavenumbers and ω is the angular frequency.
As found by Gustavsson [7] the optimal TG is obtained for streamwise independent
disturbances. Accordingly we consider a disturbance for which α = 0. The associated
Squire and Orr-Sommerfeld (OS) equations are:

[−iω − 1

Re
(D2 − β2)]η = −iβU ′v, (1)

[−iω − 1

Re
(D2 − β2)](D2 − β2)v = 0, (2)

where η(t, y, z) is the disturbance vertical vorticity and D = d
dy

. These equations along
with the boundary conditions that v = 0, Dv = 0 and η = 0 at y = ±1 complete
the formulation of the linear problem in PPF. The analytical solution of this problem
consists of two families of stable modes: symmetric and anti-symmetric ones with respect
to y = 0.

Our purpose is to follow most of the transition process analytically. We therefore seek
a minimal numbers of modes that can approximately follow the TG process, i.e. :

u(t, y, z) =

Nmodes∑
n=1

Anun(y)eiβz−iωnt, (3)

where u = [u, v, w, p], t is the non-dimensional time and Nmodes is the minimal number
of modes required. In order to obtain maximal TG we demand the initial kinetic energy
of the disturbance to be minimal. The amplitude of each mode is found analytically by
satisfying dE(0)

dAn
= 0, where the kinetic energy density is defined as

E(t) =
1

2V

∫
(|u|2 + |v|2 + |w|2)dV, (4)



where V is the volume of the domain. The gain of the energy is defined as the ratio
between the energy at a given time, E(t) and its initial value E(0). This procedure
results in two kinds of initial optimal disturbances: a single CVP and two CVP’s when
odd and even modes are used, respectively. As mentioned in the Introduction, we shall
focus on the latter .

In spite of the fact that all modes composing the initial disturbance are stable, the
combined disturbance grows for some time before its final decay due to viscous effects.
This TG occurs due to the modes having different decay rates. As the disturbance
grows it modifies the base-flow and in particular generates wall-normal and spanwise
inflection points. Consequently, the modified base-flow becomes unstable with respect to
3d secondary infinitesimal disturbances which grow exponentially. On the other hand,
the time scale associated with the TG is O(Re). This separation of time scales allows
us to perform a secondary stability analysis, assuming the modified base-flow is ‘frozen’
at a given time. Furthermore, from the analytical solution of the primary disturbance
(TG), it can be observed that the wall-normal and spanwise velocities are O(Re) smaller
than the streamwise component. Therefore, for the purpose of the secondary stability
analysis, we shall assume that the modified base-flow is parallel.

As our modified base-flow is periodic in the spanwise direction, we shall use Floquet
theory. Accordingly, we consider an infinitesimal secondary disturbance of the form

[us, vs, ws, ps] = eiαx−iωst

Mk∑
k=−Mk

[ũs, ṽs, w̃s, p̃s]k(y)eiβkz, (5)

where α is the streamwise wavenumber of the secondary disturbance and ωs its temporal
complex eigenvalue. Substituting eq. (5) into the linearized Navier-Stokes equations, for
a base-flow of the form of U = U(y, z; t), where t is a given time parameter for which
the secondary stability analysis is performed. The resulted eigenvalue problem is solved
numerically using MATLAB with 101 Chebyshev modes in the wall-normal direction. It
has been found that Mk = 5 is sufficient to get converged eigenvalues.

Finally, in order to validate our method, the analytical TG solution is compared with
DNS ‘Channelflow’ [13] results obtained for the same initial conditions.

III. Results

Fig.1 presents various linear TG scenarios for Re = 3000 and β = 2. The solid red
curve corresponds to the optimal disturbance obtained numerically for many modes (e.g.
[7]). The dashed blue curve corresponds to the optimal disturbance obtained numerically
for only even modes which are the solutions of eq. 1 and 2. The black dashed-dot curve
corresponds to the analytical TG using only five modes. It can be observed that about
85% of the optimal TG using many modes is captured using only five modes. The initial
structure of the disturbance consists of a single CVP for the odd modes and a pair of
CVPs for the even modes. Although the maximal growth of the optimal even TG is
almost half of the growth of the optimal disturbance, we shall investigate its ability to
generate inflection points and thereby lead to transition.

The initial cross-stream velocity field for the even case using only five modes is shown
in Fig.2(A). In Fig.2(B) the modified base-flow at t = 20 is shown. The color represents
the streamwise velocity. It can be seen that due to the action of the four vortices the flow
is squeezed in the center generating inflection points in the flow field: the black dashed
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Figure 1. Energy growth obtained for streamwise independent modes, Re = 3000 and β = 2.
The red solid curve corresponds to many odd modes, the blue dashed curve corresponds
to many even modes and the black dashed-dot curve to five even modes.

contours are the location of wall-normal inflection points whereas the magenta dashed
lines are the location of spanwise inflection points. In Figs (C) and (D) the corresponding
wall-normal and spanwise distributions of the streamwise velocity are shown, respectively,
with the inflection points indicated by the circles. It can be observed that there are four
inflection points in the wall-normal direction, two near the walls and two near the center
of the channel. The streamwise magnitude of the secondary disturbance is shown in Fig.3.
It is clearly seen that the locations of the maximum strength correspond to the location
of the two wall-normal inflection points which are closer to the center of the channel (see
Fig.3).
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(D) 

Figure 2. Even disturbance for Re = 3000 and β = 2. (A) The initial velocity field in the
cross-section. (B) In color the modified base-flow at t = 20, the dashed black contours and
magenta lines represent the inflection points in the wall-normal and spanwise directions,
respectively. (C) The velocity profile at z = π/β. (D) The velocity profile at y ≈ 0.5. The
inflection points are encircled in (C) and (D).
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Figure 3. (A) The streamwise magnitude of the secondary disturbance for Re = 3000,
E(0) = 2 × 10−4, t = 20, β = 2 and α = 3. (B) The modified base-flow velocity profile at
z = π/β.

Fig.4 shows the DNS results of the energy growth, initiated by the superposition of
PPF together with the five TG modes and a calculated secondary disturbance. The
broken blue curve corresponds to the initial disturbance associated with the initial dis-
turbance composed by only the TG modes (the dashed-dot black curve in Fig.1). The
initial energy of the disturbance is E(0) = 2 × 10−4. When a secondary mode obtained
from the secondary stability analysis at t = 20 and α = 3, with a relatively very small
amplitude (0.17%E(0)) is added, transition occurs rapidly (the red curve) preceded by a
relatively long TG stage.
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Figure 4. Energy growth obtained by DNS based on five even modes and a secondary
disturbance obtained at t = 30 for Re = 3000 and β = 2. The unperturbed TG (i.e. without
secondary disturbance) is given for reference (dashed line).

The temporal evolution of the vortical structures during the transition scenario asso-
ciated with Fig.4 is presented in Fig.5 and Fig.6. Only the bottom half of the channel



is plotted since the structures in the upper half are identical. To identify the vortical
structure, Q , the second invariant of the velocity gradient tensor, is used. DNS and ana-
lytical results are shown respectively in the top and bottom rows of the figures. In order
to obtain the vortical structures analytically, a constant growth of the secondary mode
was assumed. Initially, the disturbance consists of four streamwise vortices (two in the
top half of the channel and two in the bottom half) (Fig.5(A)). By t = 30 the structures
experience a varicose instability (Fig.5(B)). At t = 50 (Fig.5(C)) streamwise-periodic
spanwise vortical segments are formed above the wavy CVP. Each of these vortical struc-
tures expands and two streamwise ‘sticks’ are formed at its spanwise ends (Fig.6(A)).
Consequently a packet of horseshoe vortices is formed (Fig.6(B)). The analytical vortical
structures are plotted in Fig.5 (D),(E) and (F) and in Fig.6 (C) and (D). As can be seen
the theoretical model is able to follow the DNS structures up to the stage where a packet
of horseshoe vortices is formed, just before the final breakdown into turbulence.

IV. Concluding remarks

It is shown that five decaying modes are sufficient to approximately follow the transient
growth scenario in PPF. This enables us to follow analytically the keys stages of the
transition scenario. Comparison with similar results obtained for Couette flow [12] shows
that while most of the energy growth in Couette flow is during the growth of the secondary
disturbance, in PPF it occurs during the linear TG phase.

(A) (B) (C) 
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Figure 5. Vortex dynamics during early times in the transition as obtained from DNS (A),
(B) and (C) and as obtained analytically in (D),(E) and (F). The structures are shown by
iso-surfaces of the Q definition.
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Figure 6. Vortex dynamics during later times in the transition as obtained from DNS
(A) and (B) and as obtained analytically in (C) and (D). The structures are shown by
iso-surfaces of the Q definition.
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