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Critical Reynolds numbers for Transition 
 Theoretical values obtained by Linear Stability Theory (LST) 
disagree with the corresponding experimental values 
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Following the process analytically 
 Compare analytical expressions to DNS: 
 
 Couette + 4 modes + nonlinear + secondary 

Figure 5. Odd disturbance Re=1000; (a) Secondary stability analysis; 
(b) Transition scenarios obtained by DNS; (c) Inflectional streamwise 
velocity profile at T=10 

Figure 1. (a) single CVP = 2 vortices; (b) 2 CVPs = 4 vortices;  
(c,d) Cross-section velocity of single CVP (c) and 2 CVPs (d) 
 

Linear Optimal Disturbances Maximizing TG 
 The linear disturbance yielding the optimal energy growth 
corresponds to a Counter-Rotating Vortex Pair (CVP) – a pair of 
elongated streamwise vortices, generating streaks of high/low 
velocity. The optimization is performed on the gain (G) of the 
disturbance kinetic energy (E) 

Mathematical Method 
 (a) Analytical approximation of linear TG: 
• Streamwise independence + spanwise wavenumber β: 
 
• Modes obtained analytically from Orr-Sommerfeld (OS) and 
Squire (Sq) equations, 2 families are obtained: 
 
 
 
 
• Derive analytical expression for the energy based on 4 modes, 
their coefficients are determined to maximize the growth 
 (b) Calculation of nonlinear interactions between the 4 
modes using an asymptotic expansion: 
 
 (c) Secondary stability analysis of the modified baseflow 
• Modified baseflow = Couette + TG; (TG = 4 modes + nonlinear) 
• Floquet theory for a spanwise periodic baseflow 
• Linear two-dimensional stability analysis 

Figure 2. Energy growth for Re=3000 and 
β=1.66; optimal vs. 4 modes (analytical); 
In the inset: 2 modes (analytical) 

Figure 6: Vortical structures from DNS (a) vs. analytical (b) 

Summary 
• 4 modes are sufficient to model TG 
• Most of the transition stages captured analytically 
• Maximal growth is not essential for transition 
• The role of the TG is to generate inflection points 
• Transition dominated by a packet of hairpins 

Flow Theoretical (LST) Experimental 

Pipe Poiseuille ∞ (Stable) ~2000 

Plane Poiseuille 5772 ~1000 

Plane Couette ∞ (Stable) ~360 

Transient Growth (TG) 
 A possible explanation for the failure of the LST may lie 
within the Transient Growth mechanism according to which an 
infinitesimal disturbance may initially grow and only ultimately 
decay. During this growth, nonlinear effects may become 
considerable and instability may occur 
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Research Aim 
 Propose an analytical approximation of the linear TG 
mechanism in Couette flow and utilize it to predict 
nonlinear transition to turbulence in Couette flow 
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Results 
 Current study focuses on the odd disturbance to 
demonstrate that significant growth is not essential (Fig. 4) 
 Secondary instability verified by obtaining  
transition in DNS (Channelflow, Gibson(2012)) 
 Physical mechanism of transition: 
- The creation of a wall-normal  
  inflection point at y=0 (Fig. 5c) 
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Figure 3. Initial streamwise 
velocity, 4 modes 
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Verification 
 Very good agreement between 4 modes and the optimal. 
Physical mechanism of TG understood from the mutual initial 
cancellation of the modes 

Figure 4. Energy growth Re=1000, comparison 
between even (2 vortices) and odd (4 vortices) 
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