

Research Aim

• Study the secondary instability of TG in Couette flow and utilize it to predict nonlinear transition to turbulence

Transient Growth (TG)

- A mechanism where infinitesimal disturbances grow in a stable flow. During this growth, the baseflow can be modified significantly and instability may occur.
- Most efficient TG occurs for streamwise independent vortices

Mathematical Method

- Analytical approximation of linear TG using 4 modes
- Calculation of nonlinear interactions between the 4 modes

$$U_0(\tau, y, z) = y\hat{e}_x + \varepsilon u_L(t, y, z) + \varepsilon^2 u_{NL}(t, y, z) + \dots$$

$$Couette + 4 modes + nonlinear$$

Secondary stability analysis of the modified baseflow

$$\boldsymbol{u} = \boldsymbol{U}_0(\tau, y, z) + \delta \boldsymbol{u}_d(t, \tau, x, y, z) + \mu \delta \boldsymbol{u}_{dd}(t, \tau, x, y, z) + \dots$$

TG baseflow + Secondary disturbance + correction term

• Long time correction of u_d using solvability condition

$$u_{d} = A_{0}\tilde{u}_{d}(t, y, z) \exp \left\{ i \left[\alpha x - \int_{t_{0}}^{t} (\omega(\tau) - \frac{i}{\text{Re}} \frac{N}{M}) d\tau \right] \right\}$$
Eigenfunction
Streamwise
Eigenvalue
Long time
wavenumber
correction

• Secondary instability verified by obtaining transition in 'Channelflow' DNS (Gibson, 2012)

Stability of streaks in shear flows

Michael Karp and Jacob Cohen
Faculty of Aerospace Engineering
Technion - Israel Institute of Technology, Haifa 32000, Israel

Results

Research supported by the Israeli Science Foundation under Grant No. 1394/11

• Formation of streamwise velocity streaks containing inflection points

Energy growth during transition

- (a) Even TG Sinuous, max. spanwise shear (β =3.6)
- (b) Odd TG Sinuous, max. spanwise shear (β =3.5)
- (c) Odd TG Varicose, max. wall-normal shear (β =1.6)

Vortical structures (Isosurfaces of the Q def.) during transition

- Maximal growth is <u>not</u> essential for transition
- The role of the TG is to generate inflection points
- Optimal disturbances occur at maximal shear
- Most transition stages are captured analytically

References

Summary

"Tracking stages of transition in Couette flow analytically" Karp, M., and Cohen, J., J. Fluid Mech., 748, 2014, pp 896 – 931.